Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            3D printing is a versatile technology for creating objects with custom geometries and compositions and is increasingly employed for fabricating hybrid solid–liquid composites (SLCs). These composites, comprising solid matrices with integrated liquid components, showcase unique properties such as enhanced flexibility and improved thermal and electrical conductivities. This review focuses on methods to fabricate SLCs directly by different 3D printing techniques, e.g. without needing to backfill or impregnate a porous matrix. The techniques of extrusion, vat photopolymerization and material jetting combined with microfluidics, inkjet printing, vacuum filling and ultraviolet light curing to produce SLCs are emphasized. We also discuss the development of feedstocks, focusing on emulsions and polymer capsules as fillers, and analyze current literature to highlight their significance. The review culminates in a perspective on new directions, highlighting the potential of bicontinuous interfacially jammed emulsion gels (bijels) to facilitate the printing of continuous liquid pathways, alongside the importance of understanding ink formulation and stability. Concluding with future perspectives, we underline the transformative impact of 3D‐printed SLCs in diverse applications, signaling a significant advancement in the field.more » « less
- 
            The rapid development of additive manufacturing, also known as three-dimensional (3D) printing, is driving innovations in both industry and academia. Direct ink writing (DIW), an extrusion-based 3D printing technology, can build 3D structures through the deposition of custom-made inks and produce devices with complex architectures, excellent mechanical properties, and enhanced functionalities. A paste-like ink is the key to successful printing. However, as new ink compositions have emerged, the rheological requirements of inks have not been well connected to printability, or the ability of a printed object to maintain its shape and support the weight of subsequent layers. In this review, we provide an overview of the rheological properties of successful DIW inks and propose a classification system based on ink composition. Factors influencing the rheology of different types of ink are discussed, and we propose a framework for describing ink printability using measures of rheology and print resolution. Furthermore, evolving techniques, including computational studies, high-throughput rheological measurements, machine learning, and materiomics, are discussed to illustrate the future directions of feedstock development for DIW. The goals of this review are to assess our current understanding of the relationship between rheological properties and printability, to point out specific challenges and opportunities for development, to provide guidelines to those interested in multi-material DIW, and to pave the way for more efficient, intelligent approaches for DIW ink development.more » « less
- 
            Solid–liquid composites (SLCs) combine the properties of solids and liquids, enhancing functionalities and expanding potential applications. Traditional methods for creating SLCs often face challenges such as low mass transfer efficiency, difficulty in controlling separation behavior, and substantial waste production. Herein, we report a new approach to solve these challenges by using disulfide-based responsive polymeric capsule shells to make liquid-filled monoliths for carbon capture. The capsules are prepared through interfacial polymerization and contain either non-polar poly(α-olefin)432 or highly polar 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][TFSI]) at 74–82 wt%. Upon gentle heating, the dynamic disulfide bonds of the isolated capsules undergo bond exchange, leading to the fusion of capsule shells into free-standing monoliths that retain >89 wt% of their liquid core and remain stable for at least two weeks. These monoliths demonstrate CO2 absorption rates and capacities comparable to their capsule counterparts; further, in response to radiofrequency (RF), they reach the CO2 desorption temperature in only ∼31 s. This innovative system addresses the limitations of conventional SLC fabrication techniques, offering a versatile and practical approach to fusing polymer capsule shells for applications across separation, energy storage, and carbon capture applications.more » « less
- 
            Abstract The reproductive success of birds is closely tied to the characteristics of their nests. It is crucial to understand the distribution of nest traits across phylogenetic and geographic dimensions to gain insight into bird evolution and adaptation. Despite the extensive historical documentation on breeding behavior, a structured dataset describing bird nest characteristics has been lacking. To address this gap, we have compiled a comprehensive dataset that characterizes three ecologically and evolutionarily significant nest traits—site, structure, and attachment—for 9,248 bird species, representing all 36 orders and 241 out of the 244 families. By defining seven sites, seven structures, and four attachment types, we have systematically classified the nests of each species using information from text descriptions, photos, and videos sourced from online databases and literature. This nest traits dataset serves as a valuable addition to the existing body of morphological and ecological trait data for bird species, providing a useful resource for a wide range of avian macroecological and macroevolutionary research.more » « less
- 
            Loreau, Michel (Ed.)Tropical forests hold most of Earth’s biodiversity and a higher concentration of threatened mammals than other biomes. As a result, some mammal species persist almost exclusively in protected areas, often within extensively transformed and heavily populated landscapes. Other species depend on remaining remote forested areas with sparse human populations. However, it remains unclear how mammalian communities in tropical forests respond to anthropogenic pressures in the broader landscape in which they are embedded. As governments commit to increasing the extent of global protected areas to prevent further biodiversity loss, identifying the landscape-level conditions supporting wildlife has become essential. Here, we assessed the relationship between mammal communities and anthropogenic threats in the broader landscape. We simultaneously modeled species richness and community occupancy as complementary metrics of community structure, using a state-of-the-art community model parameterized with a standardized pan-tropical data set of 239 mammal species from 37 forests across 3 continents. Forest loss and fragmentation within a 50-km buffer were associated with reduced occupancy in monitored communities, while species richness was unaffected by them. In contrast, landscape-scale human density was associated with reduced mammal richness but not occupancy, suggesting that sensitive species have been extirpated, while remaining taxa are relatively unaffected. Taken together, these results provide evidence of extinction filtering within tropical forests triggered by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new reserves may not achieve the desired biodiversity outcomes without concurrent investment in addressing landscape-scale threats.more » « lessFree, publicly-accessible full text available February 13, 2026
- 
            Abstract Many animal–environment interactions are mediated by the physical forms of the environment, especially in tropical forests, where habitats are structurally complex and highly diverse. Higher structural complexity, measured as habitat surface area, may provide increased resource availability for animals, leading to higher animal diversity. Greater habitat surface area supports increased animal diversity in other systems, such as coral reefs and forest canopies, but it is uncertain how this relationship translates to communities of highly mobile, terrestrial mammal species inhabiting forest floors. We tested the relative importance of forest floor habitat structure, encompassing vegetation and topographic structure, in determining species occupancy and functional diversity of medium to large mammals using data from a tropical forest in the Udzungwa Mountains of Tanzania. We related species occupancies and diversity obtained from a multispecies occupancy model with ground‐level habitat structure measurements obtained from a novel head‐mounted active remote sensing device, the Microsoft HoloLens. We found that habitat surface area was a significant predictor of mean species occupancy and had a significant positive relationship with functional dispersion. The positive relationships indicate that surface area of tropical forest floors may play an important role in promoting mammal occupancy and functional diversity at the microhabitat scale. In particular, habitat surface area had higher mean effects on occupancy for carnivorous and social species. These results support a habitat surface area–diversity relationship on tropical forest floors for mammals.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
